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I
Perspective

“There are several reasons why probabilistic programming could prove

to be revolutionary for machine intelligence and scientific modelling.” !

Why? Probabilistic programming
1. ... obviates the need to manually provide inference methods
2. ... enables rapid prototyping

3. ... clearly separates the model and the inference procedures

1Ghahramani leads the Cambridge ML Group, and is with CMU, UCL, and Turing Institute.
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Probabilistic graphical models
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[
Student’s mood after an exam

How likely does a student end up with a bad mood after getting
a bad grade for an easy exam, given that she is well prepared?
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I
Printer troubleshooting in Windows 95

How likely is it that your print is garbled given that
the ps-file is not and the page orientation is portrait?
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I
Rethinking the Bayesian approach

[Daniel Roy, 2011]°

“In particular, the graphical model formalism that ushered in
an era of rapid progress in Al has proven inadequate in the

face of [these] new challenges.

A promising new approach that aims to bridge this gap is
probabilistic programming, which marries probability theory,

statistics and programming languages”

aMIT/EECS George M. Sprowls Doctoral Dissertation Award
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I
Probabilistic programs

What?
Programs with random assignments and conditioning
Why?
» Random assignments: to describe randomised algorithms

» Conditioning: to describe stochastic decision making
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Applications
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L —
Languages
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I
Roadmap

@ An “assembler” probabilistic programming language
© Bayesian inference by program analysis

© Termination

@ Runtime analysis

© How long to sample a Bayes' network?

© Epilogue
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An “assembler” probabilistic programming language

Overview

@ An “assembler” probabilistic programming language
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An “assembler” probabilistic programming language

Probabilistic GCL

skip
diverge
x :=E

observe (G)

if (G) progl else prog2

>

>

>

>

> progl ; prog2
>

» progl [p] prog2
>

while (G) prog
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Kozen

Mclver Morgan

empty statement
divergence
assignment

conditioning

sequential composition

choice

probabilistic choice

Probabilistic Programming

iteration



Let’s start simple

x := 0 [0.5]
y := 0 [0.5]
observe (x+y

= —-1;
0)

< ™

This program blocks two runs as they violate x+y = 0. Outcome:

Pix=0,y=0] = Pix=1,y=-1] = 12

Observations thus normalize the probability of the “feasible” program runs
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A loopy program

For 0 < p <1 an arbitrary probability:

bool c := true;
int i := 0;
while (c) {

i = i+1;

(c := false [p] c := true)
}
observe (odd(i))

)2N 1

The feasible program runs have a probability ) ., (1-p)" :p = ——

This program models the distribution:
Pi=2N+1] = (1-p)*" - p-(2=p) for N2 0
Pli=2N]=0
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An “assembler” probabilistic programming language

Or, equivalently

int i := 0;
repeat {
c := true;
i :=0;
while (c) {
i = i+1;
(c := false [p] c := true)
}

} until (odd(i))

This is also known as rejection sampling

Probabilistic Programming
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Weakest pre-expectations [Mclver & Morgan 2004]

An e><pectation2 maps states onto Ryo U {00 }. It is the quantitative
analogue of a predicate. Let f < g iff f(s) < g(s), for every state s.

An expectation transformer is a total function between two expectations.

The transformer wp (P, f) yields the least expectation e on P's initial state
ensuring that P terminates with expectation f.

Annotation {e} P {f} holds for total correctness iff e < wp(P, f).

Weakest liberal pre-expectation wip(P, f) = “wp(P, f) + PP diverges]".

%+ expectations in probability theory.
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Expectation transformer semantics of pGCL

skip f

diverge 0

x := E f(x:=E)

observe (G) [G]-f

P1 ; P2 wp (P1, wp(Pa, f))

if (G)P1 else P2 [G]-wp(Py, f)+[=G] - wp(P,, f)
P1 [p] P2 p-wp(Py, )+ (1-p) - wp(Py, f)

while (G)P uX. ([G]-wp(P, X)+[-G]- )

1 is the least fixed point operator wrt. the ordering <.

wlp-semantics differs from wp-semantics only for while and diverge.
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An “assembler” probabilistic programming language

Examples

1. Let program P be:
x :=5 [4/5] x := 10

For f = x, we have

wp (P, x) = %'WP(X =5,x)+ %'WP(X :=10,x) = %-5 +:10=06

2. Let program P' be:
x := x+5 [4/5] x := 10

For f = x, we have:
wp(P', x) = %'WP(X-FZ: 5,x)+%~wp(x :=10,x) = %~(x+5)+%-10 = %X +6

3. For program P' (again) and f =[x = 10], we have:

wp(P',[x=10]) = % -wp(x = x+5, [x=10]) + % - wp(x =10, [x=10])
= 2.[x+5=10]+  -[10 = 10]
4[x=5]+1

5
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An operational perspective

|
For program P, input s and expectation f:

wp (P, f)(s)

[PI .
wp(PA)(e) i Rews Hosink | ~0d)}

The ratio wp(P, ) /wlp(P, 1) for input s equals’ the conditional expected reward
to reach successful terminal state sink while satisfying all observe's in MC[[ P].

For finite-state programs, wp-reasoning can be done

with model checkers such as PRISM and Storm (www.stormchecker.org).

3Either both sides are equal or both sides are undefined.
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Bayesian inference by program analysis

Overview

© Bayesian inference by program analysis
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Bayesian inference

How likely does a student end up with a bad mood after getting
a bad grade for an easy exam, given that she is well prepared?
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Bayesian inference

P{D=0,G=0,M=0,P=1)
PAP = 1)

P{D=0,G=0,M=0|P=1)

0.6-05-0.9-0.3
0.3

= 0.27
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Bayesian inference by program verification

» Exact inference of Bayesian networks is NP-hard

» Approximate inference of BNs is NP-hard too

» Typically simulative analyses are employed
» Rejection Sampling
» Markov Chain Monte Carlo (MCMC)
» Metropolis-Hastings
» Importance Sampling

» Here: weakest precondition-reasoning
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l.i.d-loops

Loop while(G) P is iid wrt. expectation f whenever:

both wp(P,[G]) and wp(P,[~G]- f) are unaffected by P.

f is unaffected by P if none of f's variables are modified by P:

x is a variable of £ iff 3Is.3v,u:  f(s[x=v])# f(s[x=u])

If g is unaffected by program P, then: wp(P,g-f) = g-wp(P,f)
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Example: sampling within a circle

while ((x-5)**2 + (y-5)*x2 >= 25){
X uniform(0..10);
y := uniform(0..10)

3

This program is iid for every f, as both are unaffected by P’s body:

wp(P.[G]) = 1o and
1 10p 10p
wplP,[GH) = ==Y 3 [ifp=5) +Uilp-5F < 251 fx/(ifp). y/Uilp)
i=0 j=0

Joost-Pieter Katoen
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Weakest precondition of iid-loops

|
If while(G)P is iid for expectation f, it holds for every state s:

wp (P, [-~G]-F)(s)
1-wp(P,[G])(s)

wp (while (G)P, f)(s) = [G](s)- +[~G](s) - f(s)

where we let % =0.
Proof: use wp(while,(G)P,f)=[G]-wp(P,[~G]-f)- . (Wp(P, [G])') +[-G]-f

No loop invariant, martingale, or ranking function needed. Fully automatable.
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Bayesian inference

How likely does a student end up with a bad mood after getting
a bad grade for an easy exam, given that she is well prepared?
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Bayesian inference by program analysis

Bayesian networks as programs
» Take a topological sort of the BN's vertices, e.g., D; P, G; M

» Map each conditional probability table (aka: node) to a program, e.g.:

if (xD = 0 && xP = 0) {
xG := 0 [0.95] xG := 1

} else if (xD =1 && xP = 1) {
xG := 0 [0.05] xG := 1

} else if (xD = 0 && xP = 1) {
xG := 0 [0.5] xG := 1

} else if (xD =1 && xP = 0) {

xG := 0 [0.6] xG := 1

» Condition on the evidence, e.g., for P = 1 we get:

repeat { progD ; progP; progG ; progM } until (P=1)

Joost-Pieter Katoen Probabilistic Programming



Properties of BN programs

repeat { progD ; progP; progG ; progM } until (P=1)

[

. Every BN-program naturally represents rejection sampling

N

. Every BN-program is iid for every expectation f

w

. Every BN-program almost surely terminates

4. A BN-program'’s size is linear in the BN's size
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Soundness

|
For BN B over V with evidence obs for O € V' and value v for node v:

wp| prog(B, obs), /\ xv=z) = Pr( /\ v=v | /\o=obs(o)

veV\O veV\O oe0

wp of the BN'program of B joint distril;ution of B

where prog(B, obs) equals repeat progB until (/.o %o = 0bs(0)).
Thus: wp-reasoning of BN-programs equals exact Bayes' inference

As BN-programs are iid for every f, this is fully automatable
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Exact inference by wp-reasoning

Ergo: exact Bayesian inference can be done by wp-reasoning, e.g.,

P{D=0,G=0,M=0,P=1)
WP (Prood: [Xp =0AXg =0AXy =0]) = PP = 1) = 0.27
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Termination

Overview

© Termination
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Termination proofs: the classical case

L 2

5
s s s s s s s s s s
— loop iterations
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Termination

[Esparza et al., 2012]

“[Ordinary] termination is a purely topological property [...], but almost-sure
termination is not. [...] Proving almost—sure termination requires arithmetic
reasoning not offered by termination provers."

Proving a.s.-termination for a single input is M>-complete
(the same holds for approximate a.s.-termination)

Joost-Pieter Katoen Probabilistic Programming



Termination

Almost-sure termination

bool ¢ := true;

int i := 0;
while (c) {
i++;

(c := false [p] c := true)

This program does not always terminate. It almost surely terminates.

Joost-Pieter Katoen
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Proving almost-sure termination

The symmetric random walk:

while (x > 0) { x := x-1 [0.5] x := x+1 }

Is out-of-reach for many proof rules.

A loop iteration decreases x by one with probability 1/2

This observation is enough to witness almost-sure termination!
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Termination

Proving almost-sure termination

Goal: prove a.s.—termination of while(G) P
Ingredients:

» A supermartingale V mapping states onto non-negative reals
> V(s,) 2 E{V(s5i1) | V(o). ..., V(sy)}
» Running body P on state s F G does not increase E(V/(s))
» Loop iteration ceases if V/(s) =0

> ... and a progress condition: on each loop iteration in s
» V(s') = v decreases by > d(v) with probability > p(v)
» with antitone p (“probability”) and d (“decrease”) on V's values

Then: while(G) P a.s.-terminates on every input

Joost-Pieter Katoen
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Termination

Proving almost-sure termination p(V1) = p(V4)

,/ With prob_ > p( v(sl)) ............ I:.).y...a.r:l.t.llt.‘?!‘e p

V(s

L

d(V1) = d(v4)
by antitone d

L 3

— loop iterations
The closer to termination, the more V decreases and)thisibecomesiniore likely
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The symmetric random walk

» Recall:

while (x > 0) { x := x-1 [0.5] x := x+1 }

» Witnesses of almost-sure termination:
» V=x
» p(v)=12and d(v) =1

That's all you need to prove almost-sure termination!
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A symmetric-in-the-limit random walk

» Consider the program:

while (x > 0) { p := x/(2*x+1) ; x := x-1 [p] x := x+1 }

» Witnesses of almost-sure termination:
» V = H,, where H, is x-th Harmonic number 1 +1/2+ ...+ 1/x

Us ifv>0and Hy_; <v<H,
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Expressiveness

This proof rule covers many a.s.-terminating programs

that are out-of-reach for almost all existing proof rules
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Runtime analysis

Overview

@ Runtime analysis
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Null a.s.-termination

x := 10; while (x > 0) { x := x-1 [0.5] x := x+1 }

This program almost surely terminates

but requires an infinite expected time to do so.
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Positive almost-sure termination

Deciding whether a program a.s. terminates in

finitely many steps on every input, is I'Ig—complete

Being positively a.s.-terminating is not preserved by sequential composition

Nonetheless:

Expected run-times can be determined compositionally

ert(P, t) bounds P’s expected run-time if P's continuation takes t time.
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Expected runtime transformer

> skip > 1+t

> diverge > oo

> % 9= mm > 1+ Xs.Ep,qs) (Av.tlx = v](s))

> observe (G) > [G]- (1+t)

> P1 ; P2 > ert(Py, ert(Py, t))

> if (G)P1 else P2 > 1+[G]-ert(Py, t) +[=G]- ert(Py, t)
» while(G)P » uX.1+(G]-ert(P,X)+[-~G]-t)

1 is the least fixed point operator wrt. the ordering < on run-times

and a set of proof rules * to get two-sided bounds on run-times of loops

*Certified using the Isabelle/HOL theorem prover; see [Hélzl, ITP 2016].
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Runtime analysis

Run-time invariant synthesis
while (x > 0) { x := x-1 }

A lower w-invariant is:

J, = 1 + [0<x<n]2x + [x = n]-(2n-1)

on iteration on termination

We obtain:

lim (1+[0 < x < n]2x +[x = n]-(2n-1)) = 1+[x > 0]-2x

n—->00

is a lower bound on the program’s runtime.

Joost-Pieter Katoen

Probabilistic Programming



Runtime analysis

Run-time invariant synthesis

while (c) { {c := false [0.5] c := true}; x := 2*x} ;
while (x > 0) { x := x-1 }

Template for a lower w-invariant:

I, =1 + [c#1]-(1+[x>0]2x) + [c=1]-(an+bn-[x>0]-2x)

J )

«

on termination on iteration

The derived constraints are:

ap <2 and a1 < 72+1)2a, and by <0 and b,y <1+b,

This admits the solution a, =7 —5/2" and b, = n. Then: |lim,.e [, = 00

Probabilistic Programming
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Coupon collector’s problem
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Runtime analysis

Coupon collector’s problem

cp := [0,...,0]; // nmo coupons yet
i :=1; // coupon to be collected nezxt
x := 0: // number of coupons collected
while (x < N) {
while (cp[i] !'= 0) {
i := uniform(1..N) // next coupon
}
cpli]l :=1; // coupon i obtained
x++; // one coupon less to go

3

Using our ert-calculus one can prove that expected run-time is ©(N- log N).

By systematic code verification a la Floyd-Hoare. Machine checkable.
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How long to sample a Bayes’ network?

Overview

© How long to sample a Bayes' network?
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How long to sample a BN?

[Gordon, Nori, Henzinger, Rajamani, 2014]

“the main challenge in this setting [sampling-based approaches] is that many
samples that are generated during execution are ultimately rejected for not
satisfying the observations."
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A toy Bayes’ network

This BN is parametric (in a)

How many samples are needed on average
for a single iid-sample for evidence G = 07
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Rejection sampling
For a given Bayesian network and some evidence:
1. Sample from the joint distribution described by the BN
2. If the sample complies with the evidence, accept the sample and halt

3. If not, repeat sampling (that is: go back to step 1.)

If this procedure is applied N times, N iid-samples result.

Q: How many samples do we need on average for a single iid-sample?
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Sampling time for example BN

2004 — 40a — 460
8922 — 69a — 21

Rejection sampling for G = 0 requires samples:

For a €[0.1,0.78], EST is below 18; for a = 0.98, 100 samples are needed

For real-life BNs, the EST may exceed 10"
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Expected runtime of iid-loops

|
For a.s.-terminating iid-loop while(G)P for which every iteration runs in
the same expected time, we have:

1+ert(P,[~G]t)
1-wp(P,[G])

ert(while(G)P,t) = 1+[G]- +[-G](s)- t
where 0/0 := 0 and 3/0 := oo for a # 0.

Proof: similar as for the inference (wp) using the decomposition result:
ert(P,t) = ert(P,0)+ wp(P,t)

No loop invariant, martingale, or metering function needed. Fully automatable.
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How long to sample a Bayes’ network?

Example: sampling within a circle

while ((x-5)**2 + (y-5)*x2 >= 25){
x := uniform(0..10);
y := uniform(0..10)

This iid-loop is a.s.-terminating, and every iteration has same expected time.

Then: ert(Pege,0) = 1+[(x=5)°+ (y-5)° = 25]- 363

73
So: 1+ 363/73 ~ 5.97 operations are required on average using rejection sampling

Joost-Pieter Katoen
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The student’s mood example

1+ert(D; P; G; M,0)

" wp(D; PG, M, [P =1]) 23.46

ert| repeat D; P; G; M until (P=1),0

program of student mood'’s BN
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Experimental results

Benchmark BNs from www.bnlearn.com

BN [ IVI] IE]l [aMB [ |O] | EST [time(s) [ [O][ EST [ time (s) |
hailfinder | 56 | 66 | 354 || 5 | 510° | 0.63 9 | 910° 0.46
hepar? 70 | 123 | 451 || 1 [1510° | 184 2 — MO
win95pts 76 | 112 | 592 || 3 [4310° ] 0.36 12 [ 410 0.42
pathfinder | 135 | 200 | 3.04 || 3 |2910"| 31 7 ) 5.44
andes 223 | 338 | 561 || 3 |5210° | 1.66 7 | 910" 0.99
pigs 441 | 592 [ 392 || 1 |2910°| o074 7 | 1510° | 1.02
munin 1041 | 1397 | 354 | 5 00 1.43 10 | 1210 65

aMB = average Markov Blanket size, a measure of independence in BNs
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Printer troubleshooting in Windows 95

Java implementation executes about 10’ steps in a single second

For |O|=17, an EST of 10" yields 3.6 years simulation for a single iid-sample
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Epilogue

Overview

@ Epilogue
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Predictive probabilistic programming

Analysing probabilistic programs
at source code level, compositionally.

Some open problems:
» Completeness
» Query processing

» Invariant synthesis
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Epilogue

Two take-home messages

Probabilistic programs are a universal quantitative modeling formalism:
Bayes' networks, randomised algorithms, infinite-state Markov chains,
pushdown Markov chains, security mechanisms, quantum programs,

programs for inexact computing

“The crux of probabilistic programming
is to consider normal-looking programs
as if they were probability distributions”

[Michael Hicks, The Programming Language Enthusiast blog, 2014]

Joost-Pieter Katoen
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Thanks to my co-authors!

» F. OLmMEDO, F. GRETZ, N. JANSEN, B. Kaminski, JPK, A. McIver
Conditioning in probabilistic programming. ACM TOPLAS 2018.
» B. Kawminski, JPK.
On the hardness of almost-sure termination. MFCS 2015.
» B. Kawminski, JPK, C. MATHEJA, AND F. OLMEDO.
Expected run-time analysis of probabilistic programs ®. ESOP 2016.
» F. OLMEDO, B. Kaminski, JPK, C. MATHEJA.
Reasoning about recursive probabilistic programs. LICS 2016.
» A. McIvVER, C. MorGaN, B. Kaminski, JPK.
A new proof rule for almost-sure termination. POPL 2018.
> K. Barz, B. KaMiNski, JPK, C. MATHEJA.
How long, O Bayesian network, will | sample thee? ESOP 2018.

pGCL model checking: www.stormchecker.org

EATCS best paper award of ETAPS 2016.
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