Probabilistic Programming Quantitative Modeling for the Masses?

Joost-Pieter Katoen

UNIVERSITY OF TWENTE.

MMB 2018 Conference, Erlangen

nature Perspective

"There are several reasons why probabilistic programming could prove to be revolutionary for machine intelligence and scientific modelling."

REVIEW

10.1035/mmm14541

Probabilistic machine learning and artificial intelligence

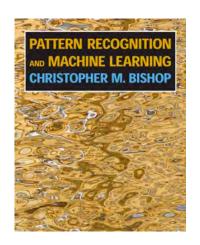
Zeathin Giminamuni^a

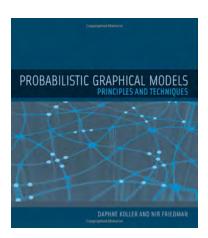
Why? Probabilistic programming

- 1. ... obviates the need to manually provide inference methods
- 2. ... enables rapid prototyping
- 3. ... clearly separates the model and the inference procedures

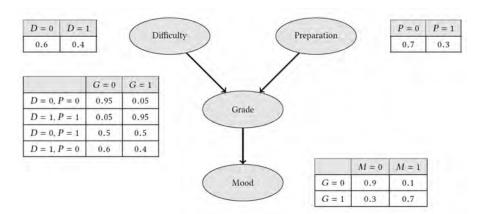
¹Ghahramani leads the Cambridge ML Group, and is with CMU, UCL, and Turing Institute.

Probabilistic graphical models





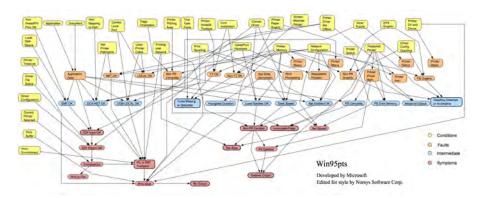
Student's mood after an exam



How likely does a student end up with a bad mood after getting a bad grade for an easy exam, given that she is well prepared?

Joost-Pieter Katoen Probabilistic Programming 4

Printer troubleshooting in Windows 95



How likely is it that your print is garbled given that the ps-file is not and the page orientation is portrait?

Rethinking the Bayesian approach

[Daniel Roy, 2011]^a

"In particular, the graphical model formalism that ushered in an era of rapid progress in AI has proven inadequate in the face of [these] new challenges.

A promising new approach that aims to bridge this gap is probabilistic programming, which marries probability theory, statistics and programming languages"

^aMIT/EECS George M. Sprowls Doctoral Dissertation Award

Probabilistic programs

What?

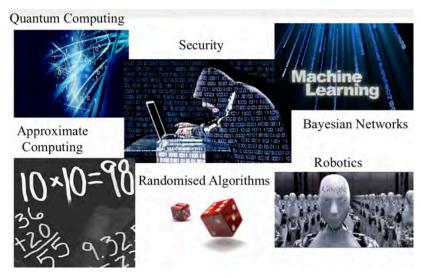
Programs with random assignments and conditioning

Why?

- Random assignments: to describe randomised algorithms
- Conditioning: to describe stochastic decision making

Joost-Pieter Katoen **Probabilistic Programming**

Applications



Languages

Languages:

Probabilistic C ProbLog

Church

webPPL

Figaro

PyMC

Tabular

R2

probabilistic-programming.org

A. Pfeffer

N. Goodman

Roadmap

- 1 An "assembler" probabilistic programming language
- 2 Bayesian inference by program analysis
- Termination
- 4 Runtime analysis
- 5 How long to sample a Bayes' network?
- 6 Epilogue

Overview

- 1 An "assembler" probabilistic programming language
- 2 Bayesian inference by program analysis
- Termination
- 4 Runtime analysis
- How long to sample a Bayes' network?
- 6 Epilogue

Probabilistic GCL

Kozen

choice

iteration

- skip
- diverge
- ▶ x := E
- ▶ observe (G)
- ▶ prog1 ; prog2
- ▶ if (G) prog1 else prog2
- prog1 [p] prog2
- ▶ while (G) prog

empty statement divergence assignment conditioning sequential composition

probabilistic choice

Let's start simple

This program blocks two runs as they violate x+y = 0. Outcome:

$$Pr[x=0, y=0] = Pr[x=1, y=-1] = 1/2$$

Observations thus normalize the probability of the "feasible" program runs

Joost-Pieter Katoen Probabilistic Programming 13/

A loopy program

For 0 an arbitrary probability:

```
bool c := true;
int i := 0;
while (c) {
    i := i+1;
    (c := false [p] c := true)
}
observe (odd(i))
```

The feasible program runs have a probability $\sum_{N\geq 0} (1-p)^{2N} \cdot p = \frac{1}{2-p}$

This program models the distribution:

$$Pr[i = 2N+1] = (1-p)^{2N} \cdot p \cdot (2-p)$$
 for $N \ge 0$
 $Pr[i = 2N] = 0$

Or, equivalently

```
int i := 0;
repeat {
    c := true;
    i := 0;
    while (c) {
        i := i+1;
        (c := false [p] c := true)
    }
} until (odd(i))
```

This is also known as rejection sampling

Weakest pre-expectations

[McIver & Morgan 2004]

An expectation² maps states onto $\mathbb{R}_{\geq 0} \cup \{\infty\}$. It is the quantitative analogue of a predicate. Let $f \leq g$ iff $f(s) \leq g(s)$, for every state s.

An expectation transformer is a total function between two expectations.

The transformer wp(P, f) yields the least expectation e on P's initial state ensuring that P terminates with expectation f.

Annotation $\{e\} P \{f\}$ holds for total correctness iff $e \le wp(P, f)$.

Weakest liberal pre-expectation wlp(P, f) = "wp(P, f) + Pr[P diverges]".

²≠ expectations in probability theory.

Expectation transformer semantics of pGCL

skip diverge x := E observe (G) P1 ; P2 if (G) P1 else P2 P1 [p] P2

while (G)P

Semantics wp(P, f)

```
f(x := E)
[G] \cdot f
wp(P_1, wp(P_2, f))
[G] \cdot wp(P_1, \mathbf{f}) + [\neg G] \cdot wp(P_2, \mathbf{f})
p \cdot wp(P_1, f) + (1-p) \cdot wp(P_2, f)
\mu X. ([G] \cdot wp(P, X) + [\neg G] \cdot f)
```

 μ is the least fixed point operator wrt. the ordering \leq .

wlp-semantics differs from wp-semantics only for while and diverge.

Examples

1. Let program *P* be:

$$x := 5 [4/5] x := 10$$

For f = x, we have

$$wp(P, x) = \frac{4}{5} \cdot wp(x := 5, x) + \frac{1}{5} \cdot wp(x := 10, x) = \frac{4}{5} \cdot 5 + \frac{1}{5} \cdot 10 = 6$$

2. Let program P' be:

$$x := x+5 [4/5] x := 10$$

For f = x, we have:

$$wp(P', x) = \frac{4}{5} \cdot wp(x + := 5, x) + \frac{1}{5} \cdot wp(x := 10, x) = \frac{4}{5} \cdot (x + 5) + \frac{1}{5} \cdot 10 = \frac{4x}{5} + 6$$

3. For program P' (again) and f = [x = 10], we have:

$$wp(P', [x=10]) = \frac{4}{5} \cdot wp(x := x+5, [x=10]) + \frac{1}{5} \cdot wp(x := 10, [x=10])$$
$$= \frac{4}{5} \cdot [x+5 = 10] + \frac{1}{5} \cdot [10 = 10]$$
$$= \frac{4 \cdot [x=5] + 1}{5}$$

An operational perspective

For program P, input s and expectation f:

$$\frac{wp(P, \mathbf{f})(s)}{wlp(P, \mathbf{1})(s)} = \mathbb{E} \{ \operatorname{Rew}_{s}^{\mathbb{P}} (\diamond sink \mid \neg \diamond \mathbf{f}) \}$$

The ratio wp(P, f)/wlp(P, 1) for input s equals³ the conditional expected reward to reach successful terminal state sink while satisfying all observe's in MC [P].

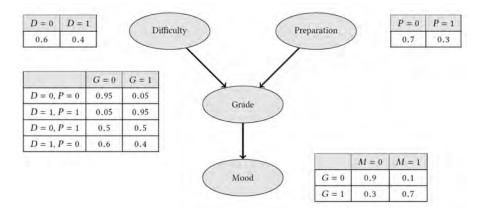
For finite-state programs, wp-reasoning can be done with model checkers such as PRISM and Storm (www.stormchecker.org).

³Either both sides are equal or both sides are undefined.

Overview

- 1 An "assembler" probabilistic programming language
- 2 Bayesian inference by program analysis
- Termination
- 4 Runtime analysis
- How long to sample a Bayes' network?
- 6 Epilogue

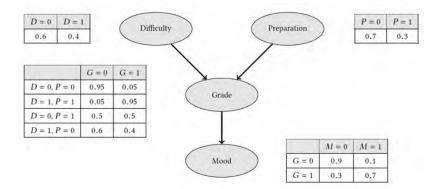
Bayesian inference



How likely does a student end up with a bad mood after getting a bad grade for an easy exam, given that she is well prepared?

Joost-Pieter Katoen Probabilistic Programming 21

Bayesian inference



$$Pr(D = 0, G = 0, M = 0 \mid P = 1) = \frac{Pr(D = 0, G = 0, M = 0, P = 1)}{Pr(P = 1)}$$
$$= \frac{0.6 \cdot 0.5 \cdot 0.9 \cdot 0.3}{0.3} = 0.27$$

Bayesian inference by program verification

- Exact inference of Bayesian networks is NP-hard
- Approximate inference of BNs is NP-hard too
- Typically simulative analyses are employed
 - Rejection Sampling
 - Markov Chain Monte Carlo (MCMC)
 - Metropolis-Hastings
 - Importance Sampling
 - **.**
- Here: weakest precondition-reasoning

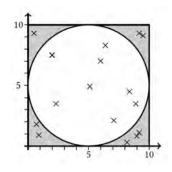
l.i.d-loops

```
Loop while (G) P is iid wrt. expectation f whenever:
    both wp(P, [G]) and wp(P, [\neg G] \cdot f) are unaffected by P.
  f is unaffected by P if none of f's variables are modified by P:
 x is a variable of f iff \exists s. \exists v, u: f(s[x = v]) \neq f(s[x = u])
If g is unaffected by program P, then: wp(P, g \cdot f) = g \cdot wp(P, f)
```

Joost-Pieter Katoen Probabilistic Programming 24/

Example: sampling within a circle

```
while ((x-5)**2 + (y-5)**2 >= 25){
    x := uniform(0..10);
    y := uniform(0..10)
}
```



This program is iid for every f, as both are unaffected by P's body:

$$wp(P,[G]) = \frac{48}{121} \quad \text{and} \quad$$

$$wp(P, [\neg G] \cdot f) = \frac{1}{121} \sum_{i=0}^{10p} \sum_{i=0}^{10p} [(i/p-5)^2 + (j/p-5)^2 < 25] \cdot f(x/(i/p), y/(j/p))$$

Weakest precondition of iid-loops

If while (G) P is iid for expectation f, it holds for every state s:

$$wp(\text{while}(G)P, \mathbf{f})(s) = [G](s) \cdot \frac{wp(P, [\neg G] \cdot \mathbf{f})(s)}{1 - wp(P, [G])(s)} + [\neg G](s) \cdot \mathbf{f}(s)$$

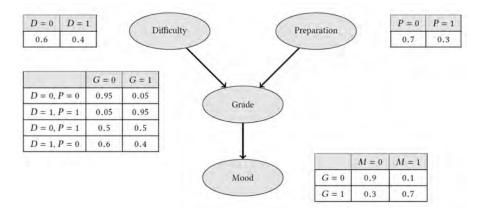
where we let $\frac{0}{0} = 0$.

Proof: use
$$wp(while_n(G)P, \mathbf{f}) = [G] \cdot wp(P, [\neg G] \cdot \mathbf{f}) \cdot \sum_{i=0}^{n-2} (wp(P, [G])^i) + [\neg G] \cdot \mathbf{f}$$

No loop invariant, martingale, or ranking function needed. Fully automatable.

Joost-Pieter Katoen Probabilistic Programming 26/63

Bayesian inference



How likely does a student end up with a bad mood after getting a bad grade for an easy exam, given that she is well prepared?

Joost-Pieter Katoen Probabilistic Programming 27

Bayesian networks as programs

- ► Take a topological sort of the BN's vertices, e.g., D; P; G; M
- ▶ Map each conditional probability table (aka: node) to a program, e.g.:

```
if (xD = 0 && xP = 0) {
   xG := 0 [0.95] xG := 1
   } else if (xD = 1 && xP = 1) {
   xG := 0 [0.05] xG := 1
   } else if (xD = 0 && xP = 1) {
   xG := 0 [0.5] xG := 1
   } else if (xD = 1 && xP = 0) {
   xG := 0 [0.6] xG := 1
}
```

	G = 0	G = 1
D = 0, P = 0	0.95	0.05
D = 1, P = 1	0.05	0.95
D = 0, P = 1	0.5	0.5
D = 1, P = 0	0.6	0.4

▶ Condition on the evidence, e.g., for P = 1 we get:

```
repeat { progD ; progP; progG ; progM } until (P=1)
```

Properties of BN programs

```
repeat { progD ; progP; progG ; progM } until (P=1)
```

- 1. Every BN-program naturally represents rejection sampling
- 2. Every BN-program is iid for every expectation f
- 3. Every BN-program almost surely terminates
- 4. A BN-program's size is linear in the BN's size

Soundness

For BN B over V with evidence obs for $O \subseteq V$ and value v for node v:

$$\underbrace{wp\left(\operatorname{prog}(B, obs), \bigwedge_{v \in V \setminus O} x_v = \underline{v}\right)}_{\text{wp of the BN program of } B} = \underbrace{Pr\left(\bigwedge_{v \in V \setminus O} v = \underline{v} \mid \bigwedge_{o \in O} o = obs(o)\right)}_{\text{joint distribution of } B}$$

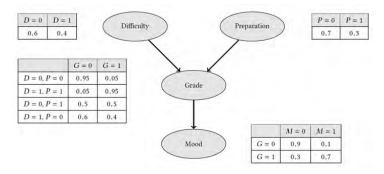
where prog(B, obs) equals repeat prog(B) until $(\bigwedge_{o \in O} x_o = obs(o))$.

Thus: wp-reasoning of BN-programs equals exact Bayes' inference

As BN-programs are iid for every f, this is fully automatable

Joost-Pieter Katoen Probabilistic Programming 30/63

Exact inference by wp-reasoning



Ergo: exact Bayesian inference can be done by wp-reasoning, e.g.,

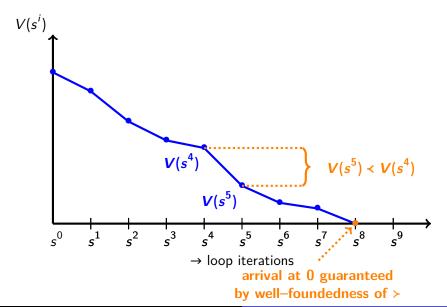
$$wp(P_{mood}, [x_D = 0 \land x_G = 0 \land x_M = 0]) = \frac{Pr(D = 0, G = 0, M = 0, P = 1)}{Pr(P = 1)} = 0.27$$

Joost-Pieter Katoen Probabilistic Programming 33

Overview

- 1 An "assembler" probabilistic programming language
- 2 Bayesian inference by program analysis
- Termination
- Runtime analysis
- 6 How long to sample a Bayes' network?
- 6 Epilogue

Termination proofs: the classical case



Termination

[Esparza et al., 2012]

"[Ordinary] termination is a purely topological property [...], but almost-sure termination is not. [...] Proving almost–sure termination requires arithmetic reasoning not offered by termination provers."

Proving a.s.-termination for a single input is Π_2 -complete (the same holds for approximate a.s.-termination)

Joost-Pieter Katoen Probabilistic Programming 34/63

Almost-sure termination

```
bool c := true;
int i := 0;
while (c) {
   i++;
   (c := false [p] c := true)
}
```

This program does not always terminate. It almost surely terminates.

Joost-Pieter Katoen Probabilistic Programming 35/63

Proving almost-sure termination

The symmetric random walk:

```
while (x > 0) \{ x := x-1 [0.5] x := x+1 \}
```

Is out-of-reach for many proof rules.

A loop iteration decreases x by one with probability 1/2This observation is enough to witness almost-sure termination!

Joost-Pieter Katoen Probabilistic Programming 36/63

Proving almost-sure termination

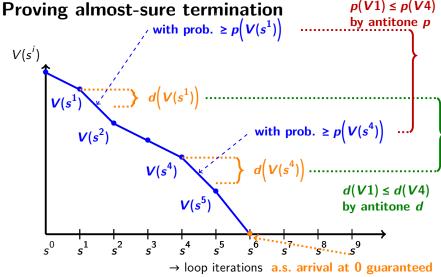
Goal: prove a.s.—termination of while(G) P

Ingredients:

- ▶ A supermartingale V mapping states onto non-negative reals
 - $V(s_n) \geq \mathbb{E}\{V(s_{n+1}) \mid V(s_0), \dots, V(s_n)\}$
 - ▶ Running body P on state $s \models G$ does not increase $\mathbb{E}(V(s))$
 - ▶ Loop iteration ceases if V(s) = 0
- ightharpoonup and a progress condition: on each loop iteration in s^i
 - ▶ $V(s^i) = v$ decreases by $\geq d(v)$ with probability $\geq p(v)$
 - with antitone p ("probability") and d ("decrease") on V's values

Then: while(G) P a.s.-terminates on every input

Joost-Pieter Katoen Probabilistic Programming 37



The closer to termination, the more V decreases and this becomes unor likely

Joost-Pieter Katoen Probabilistic Programming 38/63

The symmetric random walk

Recall:

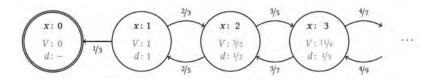
```
while (x > 0) \{ x := x-1 [0.5] x := x+1 \}
```

- ▶ Witnesses of almost-sure termination:
 - V = x
 - p(v) = 1/2 and d(v) = 1

That's all you need to prove almost-sure termination!

Joost-Pieter Katoen Probabilistic Programming 39/63

A symmetric-in-the-limit random walk



Consider the program:

while
$$(x > 0)$$
 { $p := x/(2*x+1)$; $x := x-1$ [p] $x := x+1$ }

- Witnesses of almost-sure termination:
 - ▶ $V = H_x$, where H_x is x-th Harmonic number $1 + \frac{1}{2} + \dots + \frac{1}{x}$
 - $p(v) = \frac{1}{3} \text{ and } d(v) = \begin{cases} \frac{1}{x} & \text{if } v > 0 \text{ and } H_{x-1} < v \le H_x \\ 1 & \text{if } v = 0 \end{cases}$

Expressiveness

This proof rule covers many a.s.-terminating programs that are out-of-reach for almost all existing proof rules

Joost-Pieter Katoen Probabilistic Programming 41/6

Overview

- 1 An "assembler" probabilistic programming language
- 2 Bayesian inference by program analysis
- Termination
- 4 Runtime analysis
- 6 How long to sample a Bayes' network?
- 6 Epilogue

Null a.s.-termination

```
x := 10; while (x > 0) \{ x := x-1 [0.5] x := x+1 \}
```

This program almost surely terminates but requires an infinite expected time to do so.

Joost-Pieter Katoen Probabilistic Programming 43/6

Positive almost-sure termination

Deciding whether a program a.s. terminates in finitely many steps on every input, is Π_3^0 -complete

Being positively a.s.-terminating is not preserved by sequential composition

Nonetheless:

Expected run-times can be determined compositionally

ert(P, t) bounds P's expected run-time if P's continuation takes t time.

Joost-Pieter Katoen Probabilistic Programming 44/

Expected runtime transformer

Syntax

- skip
- diverge
- ▶ x := mu
- ▶ observe (G)
- ▶ P1 ; P2
- ▶ if (G) P1 else P2
- ▶ while(G)P

Semantics ert(P, t)

- ▶ 1+t
- > ∞
- ▶ $\mathbf{1} + \lambda s. \mathbb{E}_{\llbracket \mu \rrbracket(s)} (\lambda v. \mathbf{t}[x \coloneqq v](s))$
- $\triangleright [G] \cdot (1+t)$
- \triangleright ert $(P_1, \operatorname{ert}(P_2, t))$
- ▶ **1** + $[G] \cdot ert(P_1, t) + [\neg G] \cdot ert(P_2, t)$
- $\mu X. \mathbf{1} + ([G] \cdot ert(P, X) + [\neg G] \cdot t)$

 μ is the least fixed point operator wrt. the ordering \leq on run-times and a set of proof rules 4 to get two-sided bounds on run-times of loops

⁴Certified using the Isabelle/HOL theorem prover; see [Hölzl, ITP 2016].

Run-time invariant synthesis

while
$$(x > 0) \{ x := x-1 \}$$

A lower ω -invariant is:

$$J_n = \mathbf{1} + \underbrace{[0 < x < n] \cdot 2x}_{\text{on iteration}} + \underbrace{[x \ge n] \cdot (2n-1)}_{\text{on termination}}$$

We obtain:

$$\lim_{n \to \infty} (1 + [0 < x < n] \cdot 2x + [x \ge n] \cdot (2n - 1)) = 1 + [x > 0] \cdot 2x$$

is a lower bound on the program's runtime.

Run-time invariant synthesis

while (c) { {c := false
$$[0.5]$$
 c := true}; x := $2*x$ }; while (x > 0) { x := $x-1$ }

Template for a lower ω -invariant:

$$I_n = \mathbf{1} + \underbrace{[c \neq 1] \cdot (\mathbf{1} + [x > 0] \cdot 2x)}_{\text{on termination}} + \underbrace{[c = 1] \cdot (a_n + b_n \cdot [x > 0] \cdot 2x)}_{\text{on iteration}}$$

The derived constraints are:

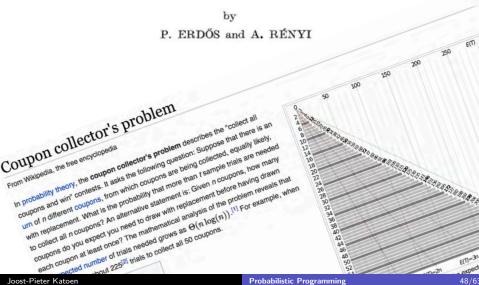
$$a_0 \le 2$$
 and $a_{n+1} \le 7/2 + 1/2 \cdot a_n$ and $b_0 \le 0$ and $b_{n+1} \le 1 + b_n$

This admits the solution $a_n = 7 - \frac{5}{2^n}$ and $b_n = n$. Then: $\lim_{n \to \infty} I_n = \infty$

Joost-Pieter Katoen Probabilistic Programming 47,

Coupon collector's problem

ON A CLASSICAL PROBLEM OF PROBABILITY THEORY



Coupon collector's problem

```
cp := [0,...,0]; // no coupons yet
i := 1; // coupon to be collected next
x := 0: // number of coupons collected
while (x < N) {
    while (cp[i] != 0) {
        i := uniform(1..N) // next coupon
    }
    cp[i] := 1; // coupon i obtained
    x++; // one coupon less to go
}</pre>
```

Using our ert-calculus one can prove that expected run-time is $\Theta(N \cdot \log N)$.

By systematic code verification à la Floyd-Hoare. Machine checkable.

Joost-Pieter Katoen Probabilistic Programming 49/63

Overview

- 1 An "assembler" probabilistic programming language
- 2 Bayesian inference by program analysis
- Termination
- 4 Runtime analysis
- 5 How long to sample a Bayes' network?
- 6 Epilogue

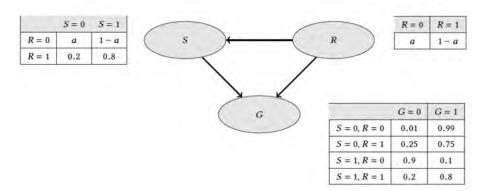
How long to sample a BN?

[Gordon, Nori, Henzinger, Rajamani, 2014]

"the main challenge in this setting [sampling-based approaches] is that many samples that are generated during execution are ultimately rejected for not satisfying the observations."

Joost-Pieter Katoen Probabilistic Programming 51/63

A toy Bayes' network



This BN is parametric (in a)

How many samples are needed on average for a **single** iid-sample for evidence G = 0?

Rejection sampling

For a given Bayesian network and some evidence:

- 1. Sample from the joint distribution described by the BN
- 2. If the sample complies with the evidence, accept the sample and halt
- 3. If not, repeat sampling (that is: go back to step 1.)

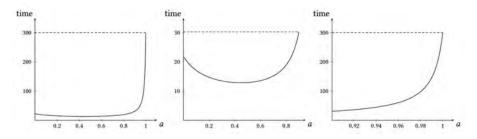
If this procedure is applied N times, N iid-samples result.

Q: How many samples do we need on average for a single iid-sample?

Joost-Pieter Katoen Probabilistic Programming 53/

Sampling time for example BN

Rejection sampling for G = 0 requires $\frac{200a^2 - 40a - 460}{89a^2 - 69a - 21}$ samples:



For $a \in [0.1, 0.78]$, EST is below 18; for $a \ge 0.98$, 100 samples are needed

For real-life BNs, the EST may exceed 10¹⁵

Joost-Pieter Katoen Probabilistic Programming 54/63

Expected runtime of iid-loops

For a.s.-terminating iid-loop while(G)P for which every iteration runs in the same expected time, we have:

$$ert(while(G)P, t) = 1 + [G] \cdot \frac{1 + ert(P, [\neg G] \cdot t)}{1 - wp(P, [G])} + [\neg G](s) \cdot t$$

where 0/0 := 0 and $a/0 := \infty$ for $a \neq 0$.

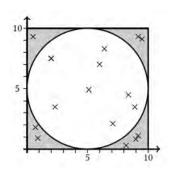
Proof: similar as for the inference (wp) using the decomposition result: ert(P, t) = ert(P, 0) + wp(P, t)

No loop invariant, martingale, or metering function needed. Fully automatable.

Joost-Pieter Katoen Probabilistic Programming 55

Example: sampling within a circle

```
while ((x-5)**2 + (y-5)**2 >= 25){
    x := uniform(0..10);
    y := uniform(0..10)
}
```



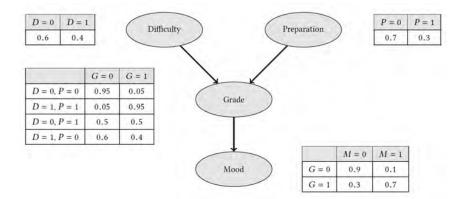
This iid-loop is a.s.-terminating, and every iteration has same expected time.

Then:
$$ert(P_{circle}, \mathbf{0}) = \mathbf{1} + [(x-5)^2 + (y-5)^2 \ge 25] \cdot \frac{363}{73}$$

So: $1 + \frac{363}{73} \approx 5.97$ operations are required on average using rejection sampling

Joost-Pieter Katoen Probabilistic Programming 56/63

The student's mood example



$$ert\left(\underbrace{\text{repeat D; P; G; M until }(P=1)}_{\text{program of student mood's BN}}, 0\right) = \frac{1 + ert(D; P; G; M, 0)}{wp(D; P; G; M, [P=1])} \approx 23.46$$

Joost-Pieter Katoen Probabilistic Programming 57

Experimental results

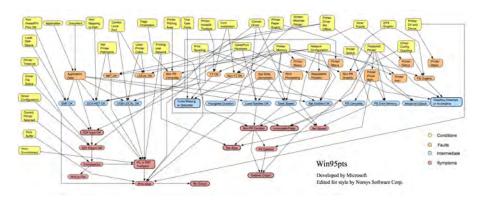
Benchmark BNs from www.bnlearn.com

BN		<i>E</i>	aMB	0	EST	time (s)	0	EST	time (s)
hailfinder	56	66	3.54	5	5 10 ⁵	0.63	9	9 10 ⁶	0.46
hepar2	70	123	4.51	1	1.5 10 ²	1.84	2	<u> </u>	МО
win95pts	76	112	5.92	3	4.3 10 ⁵	0.36	12	4 10 ⁷	0.42
pathfinder	135	200	3.04	3	2.9 10 ⁴	31	7	∞	5.44
andes	223	338	5.61	3	5.2 10 ³	1.66	7	9 104	0.99
pigs	441	592	3.92	1	2.9 10 ³	0.74	7	1.5 10 ⁶	1.02
munin	1041	1397	3.54	5	∞	1.43	10	1.2 10 ¹⁸	65

aMB = average Markov Blanket size, a measure of independence in BNs

Joost-Pieter Katoen Probabilistic Programming 58/

Printer troubleshooting in Windows 95



Java implementation executes about 10^7 steps in a single second For |O|=17, an EST of 10^{15} yields 3.6 years simulation for a single iid-sample

Joost-Pieter Katoen Probabilistic Programming 59/63

Overview

- 1 An "assembler" probabilistic programming language
- 2 Bayesian inference by program analysis
- Termination
- 4 Runtime analysis
- 5 How long to sample a Bayes' network?
- 6 Epilogue

Predictive probabilistic programming

Analysing probabilistic programs at source code level, compositionally.

Some open problems:

- Completeness
- Query processing
- Invariant synthesis

Two take-home messages

Probabilistic programs are a universal quantitative modeling formalism:

Bayes' networks, randomised algorithms, infinite-state Markov chains, pushdown Markov chains, security mechanisms, quantum programs, programs for inexact computing

"The crux of probabilistic programming is to consider normal-looking programs as if they were probability distributions"

[Michael Hicks, The Programming Language Enthusiast blog, 2014]

Joost-Pieter Katoen Probabilistic Programming 62/6

Thanks to my co-authors!

- ► F. OLMEDO, F. GRETZ, N. JANSEN, B. KAMINSKI, JPK, A. McIVER Conditioning in probabilistic programming. ACM TOPLAS 2018.
- ► B. KAMINSKI, JPK.

 On the hardness of almost-sure termination. MFCS 2015.
- ► B. KAMINSKI, JPK, C. MATHEJA, AND F. OLMEDO.

 Expected run-time analysis of probabilistic programs ⁵. ESOP 2016.
- F. Olmedo, B. Kaminski, JPK, C. Matheja. Reasoning about recursive probabilistic programs. LICS 2016.
- ► A. McIver, C. Morgan, B. Kaminski, JPK.

 A new proof rule for almost-sure termination. POPL 2018.
- K. BATZ, B. KAMINSKI, JPK, C. MATHEJA.
 How long, O Bayesian network, will I sample thee? ESOP 2018.

pGCL model checking: www.stormchecker.org

⁵EATCS best paper award of ETAPS 2016.